24th Annual ECSS Congress Prague/Czech Republic, July 3-6 2019

Effects of carbohydrate intake during a 1-h heavy intensity cycling exercise on subsequent running economy - a single-blinded pilot study

Triska, C.1,2, Moitzi, A.1, Jocha, M.1, Wessner, B.1, Bachl, N.1,2, Tschan, H. 1

1University of Vienna; 2Austrian Institute of Sports Medicine

INTRODUCTION:

The energy cost of running (Cr) is one of the key predictors of performance for long distance races [1]. A study in triathletes has demonstrated that after exhaustive cycling Cr has increased in moderately-trained triathletes [2] and another study has found that gross efficiency in cycling was also impaired after prolonged exercise [3]. On the downside, carbohydrate (CHO) intake during prolonged cycling exercise is considered to improve performance [4]. Therefore, the aim of this study was to assess the effect of CHO intake during 1-h cycling on subsequent Cr .
METHODS:
Six moderately-trained triathletes (maximal oxygen uptake: $53 \pm 4 \mathrm{~mL} / \mathrm{min} / \mathrm{kg}$) performed three trials on an ergometer (Cyclus2, RBM electronics, Germany) and a treadmill (Saturn, $\mathrm{h} / \mathrm{p} / \mathrm{cosmos}$, Germany): (1) a cycling graded exercise test to determine respiratory compensation point (RCP) after a 10-min baseline determination of Cr at $2.78 \mathrm{~m} / \mathrm{s}(\mathrm{BL})$; (2 and 3) a 1-h cycling trial at 90% of RCP power-output (PO) followed by 10 min running at $2.78 \mathrm{~m} / \mathrm{s}$. Trials 2 and 3 were randomised and athletes had to drink either a 1-L placebo drink (PL) containing $<7 \mathrm{~g} \mathrm{CHO} / \mathrm{L}$ or a 1-L CHO drink (CARB) containing $60 \mathrm{~g} \mathrm{CHO} / \mathrm{L}$. Respiratory gases (MetaMax 3B, Cortex, Germany) were measured continuously during running and the last 2 min of the running trials were used for analysis. A repeated measures ANOVA was used to detect changes between the treatments as well as effect sizes expressed as partial eta-squared. Significant main effects were followed-up by Bonferroni post-hoc procedures. Significance was set at $\mathrm{P}<0.05$. RESULTS:
Mean Cr was $4.42 \pm 0.47,4.56 \pm 0.50$, and $4.32 \pm 0.46 \mathrm{~J} / \mathrm{kg} / \mathrm{m}$ for BL, CARB and PLA, respectively. Significant differences were found between the treatments ($F 2,10=6.80 ; P=0.014$; effect size $=0.576$). Post-hoc tests revealed differences only between PLA and CARB ($\mathrm{P}=0.013$). Mean respiratory exchange ratio during running was $0.91 \pm 0.02,0.89 \pm 0.04$, and 0.88 ± 0.03 for BL, CARB and PLA, respectively. No significant differences were found between treatments ($F 2,10=3.18 ; P=0.085$, effect size $=0.389$). Contribution of CHO during running was $73.1 \pm 6.4 \%, 64.0 \pm 14.8 \%$, and $63.7 \pm 11.4 \%$ and of fat was $26.9 \pm 6.4 \%, 36.0 \pm 14.8 \%$, and $36.3 \pm 11.4 \%$ for BL, CARB and PLA, respectively. No significant differences were found between treatments ($F 2,10=2.85$; $P=0.105$; effect size $=0.363$ for CHO and fat, respectively).
CONCLUSION:
The novel finding of this pilot work was that drinking CARB during 1 h cycling at 90% of RCP PO significantly increased Cr, also demonstrated by a moderate effect size. In contrast, PLA did not significantly alter Cr . Even though participants ingested 60 g CHO during cycling, a shift from CHO to fat oxidation during subsequent running was evident with no significant differences to PLA. In summary, CHO ingestion during cycling elevates sub-maximal Cr , however, it is still unclear if this notably affects running performance in a triathlon race.

1. Jones (2006) 2. Millett et al. (2000) 3. Hopker et al. (2016) 4. Currell \& Jeukendrup (2008)

Topic:
Presentation form:
Training and Testing
Oral

